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satisfies

~&4 GeV'
At any rate, as co ' —+ ~ or ~ ~ 0, we should have

W2(~, v) =P(s))/v (a'/v~ ~'v (19)
Thus in order to see the scaling behavior for ~=1 GeV'
or larger we ought to have, for example, co '&4 GeV ',
whereas for ~~0.5 GeV' or larger we must have ~ '& 15
GeV '. The numbers given here are only approxima-
tions. Nonetheless, they give fairly good estimates
for the region of validity and show its sensitivity for
small ~.

(3) It is particularly interesting to consider Eq. (16)
for small K, since we know that vW2(a, v) =0 at a=0.
From Eq. (17) we see that the scaling law should be
valid even for very small a, as long as co

' is large enough.
Therefore, we should see vW2(~, v) fall off as ~ ' becomes
larger for any ~. The present experimental results do
show the decreasing trend, ' but it may be necessary to
go to considerably higher co ' to see it more significantly.

where 6&0. This is indeed consistent with the'Regge
asymptotic behavior, viz. ,

Wg(~, v) P(~)v &'& ' as

where n(0) (1 is the f =0 intercept of the leading Regge
trajectory.

(4) Finally we note that we have neglected the
contributions due to higher orders in y throughout this
paper. We remark that this is a meaningful approxima-
tion for q4/q3( —,'~s or ~(~'~sr"' which covers most of
the region tested so far. However, the higher-order
corrections become important in the region of small If:

and large ~. We shall report on this along with other
results in the future.
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Bounds are established for certain integrals involving L(s), the left-hand cut contribution in J=1 m.7r

scattering. A theoretical calculation of L(s) by Collins and Johnson is shown to violate the bounds seriously.
The implications of this are discussed.

INTRODUCTION

''N a series of papers, Collins and Johnson' have
~ - performed a calculation of the low-energy mal. scat-
tering amplitudes, using the Frye-Warnock 1V/D
equations. ' The left-hand-cut contribution L(s), which
is needed as input to these equations, was calculated
using a form of the "new strip approximation, " which
modifies and perhaps improves the single-p-exchange
approximation. The calculation was apparently suc-
cessful; in particular, it predicted a sufFiciently narrow

p meson without including a Castillejo-Dalitz-Dyson
(CDD) parameter in the E/D equations.

In this paper the J=1 mw partial wave is studied. A
bound is established for a certain average over the
physical quantity L(s). It is shown that Collins and
Johnson's calculated theoretical value L seriously
violates this bound. The question then arises how it
was possible for the Ã/D solution nevertheless to have
the correct p resonance, and it is pointed out that a
probable explanation is the absence of any CDD
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'P. D. B. Collins and R. C. Johnson, Phys. Rev. 1V'7, 2472
(1969); 182, 1755 (1969), 185, 2020 (1969); The dot-dash curve
in our Fig. 1 is taken from Fig. 5 of the second of these papers.' G. Frye and R. L. Warnock, Phys. Rev. 123, 1478 (1961).

parameter in these equations. In other words, it is sug-
gested that the correct p resonance was obtained only
as a result of two canceling errors in the input —a too
large left-hand-cut contribution and the absence of a
CDD parameter.

It should be emphasized that the criticisms to be
made concerning the Collins-Johnson calculation would
probably apply equally to many other similar calcula-
tions. The point is, however, that, in contrast with most
other calculations, the Collins-Johnson calculation gives
a p meson with the correct mass and width, without
a CDD parameter.

$—$0 $—$0 t

p(~) = (so ——4M ')
4 $

(2).

' This is not quite the scattering amplitude A (s) = (qe2s' —1)/2',
but its use allows a simple derivation of the Frye-%'arnock
equations and a simple definition of L(s), though historically
(see Ref. 2) A (s) was used.

BOUNDS ON LEFT-HAND-CUT CONTRIBUTION

The Frye-Warnock E/D equations are most easily
formulated using a function'

E(s) = (e" sinb)/g 'p,
where
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TABLE I. Violation of inequality (7). The inequality (7) is
shown to be violated, with b =20 GeV' and with a and sI as shown.
As explained in the text, the second term in the square bracket of
(7) is set equal to zero.

s, (GeV2)

2
1
0.5

a=8 GeV'
L.h.s.&R.h.s.

8 3.6
8 4.8
8 52

a=2 GeV'
L.h.s.&R.h.s.

11.5 4.0
11.5 6.4
11.5 9.6

~1~
~ ma Os ~

I I I I I I I 1 I I
OM' 2 4 6 8 0 12 V 16 8 20 a (GeV')

FIG. i. Curves shown are: ———, I/2p (s); ——, the Collins-
Johnson I.(s); —,unmodi6ed p exchange for I.(S), with p
width 120 MeV; — ~ —,a Veneziano model prediction for I (s)
PS. Humble (unpublished}j, with p width i20 MeV. Note that
the Collins-Johnson value is even bigger than unmodi6ed p
exchange, whereas the Veneziano-model prediction is smaller and
would certainly not violate any inequality of the kind considered
in this paper.

how an E/D solution could be obtained using
this value for I(s), since the E/D solution is auto-
matically unitary. The answer, of course, must be
that the dispersion relation (3) is violated by the 1V/D
solution. This will happen if the solution has poles in
addition to right- and left-hand cuts. It is known' that
with the elementary p-exchange approximation for I.,
an ln6nltc nuIQbcI' of such poles aI'lscs ln thc lninltc-
cutoff limit.

CONSEQUENCES OF VIOLATION OF BOUND

Since the Collins-Johnson value for L is unphysical,
one has to ask why they obtained the correct p reso-
nance. Obviously there are two possibilities, (i) the
calclllatloll ls lllscllsltlvc to lalgc cllallgcs ln L($), ol
(ii) an additional, canceling, nonphysical feature occurs
in the calculation.

Regarding (i), experience with Ã/D calculationss

8 A. P. Contogouris and A. Martin, Nuovo Cimento 4&A, 61
(1967).

'See, e.g., R. C. Devenish, J. C. Eilbeck, and D. H. Lyth,
University of Lancaster Report, 1970 (unpublished).

suggests that it is not the case; also it would be un-
desirable for the Collins-Johnson calculation, where a
bootstrap requirement is being imposed to determine I.
by varying it until the output satis6es certain criteria.

Regarding (ii), it is noteworthy that a serious
candidate for the second unphysical feature is provided
by the fact that a CDD parameter is likely to be
necessary in the physical E/D equations. As explained,
for example, in Ref. 9, this will be necessary unless the
phase shift b(s) falls quickly to zero above the p reso-
nance. It is not known whether the ~7( phase shift falls
like this, but the resonant mE phase shifts —most
strikingly the P33—certainly do not.

CONCLUSION

The firm conclsIsion is that the Collins-Johnson
calculation of L(s) has given a result bigger than the
physical one. An argument is also given which suggests
that thc calculated E/D solution has important
spurious poles. It is emphasized that a CDD parameter
is likely to be needed in the physical solution; if this is
so, the success of the calculation (which had no CDD
parameter) was possible only because an unphysical
L(s) was used as input.
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