3 ALMOST-INFINITE-MOMENTUM FRAME. .-

satisfies
k>4 GeV?. (18)

Thus in order to see the scaling behavior for k=1 GeV?
or larger we ought to have, for example, w124 GeV~,
whereas for k~0.5 GeV? or larger we must have w1215
GeV~t. The numbers given here are only approxima-
tions. Nonetheless, they give fairly good estimates
for the region of validity and show its sensitivity for
small «.

(3) Itis particularly interesting to consider Eq. (16)
for small , since we know that »W,(x,»)=0 at x=0.
From Eq. (17) we see that the scaling law should be
valid even for very small «, as long as ™ is large enough.
Therefore, we should see vIW5(x,») fall off as ™ becomes
larger for any k. The present experimental results do
show the decreasing trend,! but it may be necessary to
go to considerably higher w™ to see it more significantly.
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At any rate, as w'— o or w — 0, we should have

W) =F (@)/v= o’ /vy b7 (19)

where §>0. This is indeed consistent with the Regge
asymptotic behavior, viz.,

Wa(k, )8 (k)r2®~2  as

V'—-)OO’

where «(0)< 1 is the =0 intercept of the leading Regge
trajectory.

(4) Finally we note that we have neglected the
contributions due to higher orders in vy throughout this
paper. We remark that this is a meaningful approxima-
tion for ¢i/q; ST or 0 Stmk!/2 which covers most of
the region tested so far. However, the higher-order
corrections become important in the region of small «
and large w. We shall report on this along with other
results in the future.
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Bounds are established for certain integrals involving L(s), the left-hand cut contribution in J=1 7=
scattering. A theoretical calculation of L(s) by Collins and Johnson is shown to violate the bounds seriously.

The implications of this are discussed.

INTRODUCTION

N a series of papers, Collins and Johnson! have

performed a calculation of the low-energy = scat-
tering amplitudes, using the Frye-Warnock N/D
equations.? The left-hand-cut contribution L(s), which
is needed as input to these equations, was calculated
using a form of the “new strip approximation,” which
modifies and perhaps improves the single-p-exchange
approximation. The calculation was apparently suc-
cessful; in particular, it predicted a sufficiently narrow
p meson without including a Castillejo-Dalitz-Dyson
(CDD) parameter in the N/D equations.

In this paper the J=1 o7 partial wave is studied. A
bound is established for a certain average over the
physical quantity L(s). It is shown that Collins and
Johnson’s calculated theoretical value L seriously
violates this bound. The question then arises how it
was possible for the N /D solution nevertheless to have
the correct p resonance, and it is pointed out that a
probable explanation is the absence of any CDD

* Permanent address: University of Lancaster, Lancaster,
England.

LP. D. B. Collins and R. C. Johnson, Phys. Rev. 177, 2472
(1969); 182, 1755 (1969), 185, 2020 (1969); The dot-dash curve
in our Fig. 1 is taken from Fig. 5 of the second of these papers.

2 G. Frye and R. L. Warnock, Phys. Rev. 123, 1478 (1961).

parameter in these equations. In other words, it is sug-
gested that the correct p resonance was obtained only
as a result of two canceling errors in the input—a too
large left-hand-cut contribution and the absence of a
CDD parameter.

It should be emphasized that the criticisms to be
made concerning the Collins-Johnson calculation would
probably apply equally to many other similar calcula-
tions. The point is, however, that, in contrast with most
other calculations, the Collins-Johnson calculation gives
a p meson with the correct mass and width, without
a CDD parameter.

BOUNDS ON LEFT-HAND-CUT CONTRIBUTION

The Frye-Warnock N/D equations are most easily
formulated using a function?

F(s)=(¢* sind)/n"p, ¢Y)

s—So/S—So\ /2
o(5) = ( )
4 s

3 This is not quite the scattering amplitude A4 (s) = (ne*®—1) /24p,
but its use allows a simple derivation of the Frye-Warnock
equations and a simple definition of L(s), though historically
(see Ref. 2) 4 (s) was used.

where

(30 = 4M1r2) (2)
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and § and 7 are the phase shift and the inelasticity
parameter. We define a “left-hand-cut contribution”
L in terms of F by

20 GeV?

P ImF(s")
ReF(s)=L(s)+— / ds’

B (3)

s'—s

the upper limit being the one used by Collins and
Johnson.!

If § and 5 were known up to sufficiently high energies
(with a good accuracy for & in the p resonance region),
we could calculate an “experimental” value? for L and
compare it with the calculated value of Collins and
Johnson. Alternatively, with sufficiently sophisticated
mathematics we could produce® rigorous bounds on
weighted averages over L, using only Eq. (3) plus the
unitarity limits

|ReF(s)| <1/2p(s) , )
0 TmF(s)< 1/p(s). )

Here a procedure is adopted which is intermediate
between these two approaches.

Since the unitarity limit (5) diverges as s— so, we
consider the quantity

1 st ImF(s’
I:L(s)+~/ ds’I F(Q—-RCF(S):I

s'—s

P [20GeV? ImF(s')
=—— / ds'———, (6)
T Js

’

where s; is an arbitrary separation point and we only
consider s>s;. We then get rid of the principal-valued
integral by averaging® over any interval ¢<s<b, with
a>s; and 3(a+0) <20 GeV2 If the square bracket is
positive in this region (as it will be in our application)
this gives the bound, using (4) and (5),

b 1 ot ImF(s') 1
/ ds[L(s) —— / ds'——— — :l
a ™ J s s'—s ZP(S)

1 i (a+bd) b—s'
< ——/ ds’ In

™

1

p(s")
4+ This has been done for the 7N case; see e.g., A. Donnachie,
J. Hamilton, and A. T. Lea, Phys. Rev. 135, B515 (1964).

5 A. Martin, Nuovo Cimento 38, 1326 (1965). (I am indebted
to Dr. A. K. Common for this reference.) Rigorous bounds could
also be obtained by the averaging method of the present paper,
if one set s;=so but did the averaging with a weight function ¢(s)
such that f32ds's(s')/(s'—s0)=0 so as to avoid the difficulty
that 1/p diverges as s — so.

¢ The interchange of the orders of integration over s and s’
to get the right-hand side of (7) may be justified as follows. First
s is taken to vary over a pair of lines parallel to the real axis but
finite distances ==e away, so that no principal-valued integral is
necessary. The interchange of the orders of integration for finite e
is then immediate, because the integrand is bounded. Finally, the
interchange of the limit e— O with the integration over s’ is
permissible “because ~ of Lebesgue’s dominated-convergence
theorem. I am indebted to Dr. D. Atkinson for demanding that
I provide a proof of (7).

U]

/
1 s'—a

LYTH 3

[The quantity —(s'—s)~! goes over to its average value
In|(b—s")/(s’—a)|, which is positive for s’ <}(a+b).]

Present data do not permit a really accurate evalua-
tion of the second term in the square bracket of (7).
However, it will turn out to be enough to estimate its
order of magnitude, and for this purpose we can use the
narrow-width p-resonance approximation giving for a
width of 120 MeV

1 st ImF(s") 0.7
——/ ds’ o~

7w J s s'—s

(>M2).  (8)

s—M,

For the s values we are going to consider, and for (at
least) s;~M,?2, this approximation will not be wrong
by an order of magnitude.

Now let us consider the Collins-Johnson calculated
value for L(s), which is shown in Fig. 1. We see that it
exceeds 1/2p(s) for s22 GeV2. Also, according to the
estimate (8) we can completely neglect the second term
in the square bracket of (7), for (say) sZ4 GeV=
~ In Table I, the inequality (8) is tested with this
second term set equal to zero. It is seen to be violated,
so we conclude that the Collins and Johnson'’s calculated
value for L(s) cannot be a good approximation to the
physical value, over the range 255520 GeV2,

In the above, we have used physical information to
show that the second term in the square bracket is
small. Actually, it is likely that the Collins-Johnson
value of L(s) can be ruled out just by considering the
unitarity limits (4) and (5), plus the dispersion
relation (3).

To see this, we note that the integral

st ImF(s")
/ ds’ —

0 s'—s

is over a relatively small range of s’ values, in the sense
that (s'—s)~! varies by only a few percent (for the
values of s; and s which we need consider). Also, ImF
is positive. These two facts mean that to a good approxi-
mation the integral will be of the form const/(s—so)
~const/s.” It cannot, therefore, cancel the Collins-
Johnson value for L(s) to a good accuracy, over the
whole range of s values involved; hence the inequality
(7) [or its counterpart for the case where the square
bracket in (6) is negative] is likely to be violated
whatever form is assumed for ImF, provided this is
positive.

That this conclusion is possible need cause no sur-
prise, since it is already known® that L(s) cannot be
too big, as mentioned above.

If the Collins-Johnson value for L(s) is indeed not
permitted by the dispersion relation (3) and the
unitarity bounds (4) and (5), the question arises

7 The positive definiteness of ImF allows one to calculate a
precise envelope around the curve const/s, within which the
integral must lie; see A. P. Balachandran, Ann. Phys. (N. Y.) 30,
476 (1964).
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Fic. 1. Curves shown are: ———, 1/2p(s); —-—, the Collins-
Johnson L(s); ——, unmodiﬁed.p exchange for L(S), with p

width 120 MeV; —-- -~ a Veneziano model prediction for L(s)
[S. Humble (unpublished)], with p width 120 MeV. Note that
the Collins-Johnson value is even bigger than unmodified p
exchange, whereas the Veneziano-model prediction is smaller and
would certainly not violate any inequality of the kind considered
in this paper.

how an N/D solution could be obtained using
this value for L(s), since the N/D solution is auto-
matically unitary. The answer, of course, must be
that the dispersion relation (3) is violated by the N/D
solution. This will happen if the solution has poles in
addition to right- and left-hand cuts. It is known? that
with the elementary p-exchange approximation for L,
an infinite number of such poles arises in the infinite-
cutoff limit.

CONSEQUENCES OF VIOLATION OF BOUND

Since the Collins-Johnson value for L is unphysical,
one has to ask why they obtained the correct p reso-
nance. Obviously there are two possibilities, (i) the
calculation is insensitive to large changes in L(s), or
(ii) an additional, canceling, nonphysical feature occurs
in the calculation.

Regarding (i), experience with N/D calculations®

8 A]) P. Contogouris and A. Martin, Nuovo Cimento 49A, 61
(1967).

9 See, e.g., R. C. Devenish, J. C. Eilbeck, and D. H. Lyth,
University of Lancaster Report, 1970 (unpublished).
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Tasire I. Violation of inequality (7). The inequality (7) is
shown to be violated, with =20 GeV? and with ¢ and s, as shown.
As explained in the text, the second term in the square bracket of
(7) is set equal to zero.

a=8 GeV? a=2 GeV?

51 (GeV?) L.hs.<R.hs. L.hs.<Rhs
2 8 3.6 11.5 4.0
1 8 4.8 11.5 6.4
0.5 8 5.2 11.5 9.6

suggests that it is not the case; also it would be un-
desirable for the Collins-Johnson calculation, where a
bootstrap requirement is being imposed to determine L
by varying it until the output satisfies certain criteria.

Regarding (ii), it is noteworthy that a serious
candidate for the second unphysical feature is provided
by the fact that a CDD parameter is likely to be
necessary in the physical N/D equations. As explained,
for example, in Ref. 9, this will be necessary unless the
phase shift §(s) falls quickly to zero above the p reso-
nance. It is not known whether the == phase shift falls
like this, but the resonant w/V phase shifts—most
strikingly the P3s—certainly do not.

CONCLUSION

The firm conclusion is that the Collins-Johnson
calculation of L(s) has given a result bigger than the
physical one. An argument is also given which suggests
that the calculated N/D solution has important
spurious poles. It is emphasized that a CDD parameter
is likely to be needed in the physical solution; if this is
so, the success of the calculation (which had no CDD
parameter) was possible only because an unphysical
L(s) was used as input.
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